3(h^2-4)=5h(h-1)-9h

Simple and best practice solution for 3(h^2-4)=5h(h-1)-9h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(h^2-4)=5h(h-1)-9h equation:



3(h^2-4)=5h(h-1)-9h
We move all terms to the left:
3(h^2-4)-(5h(h-1)-9h)=0
We multiply parentheses
3h^2-(5h(h-1)-9h)-12=0
We calculate terms in parentheses: -(5h(h-1)-9h), so:
5h(h-1)-9h
We add all the numbers together, and all the variables
-9h+5h(h-1)
We multiply parentheses
5h^2-9h-5h
We add all the numbers together, and all the variables
5h^2-14h
Back to the equation:
-(5h^2-14h)
We get rid of parentheses
3h^2-5h^2+14h-12=0
We add all the numbers together, and all the variables
-2h^2+14h-12=0
a = -2; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·(-2)·(-12)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*-2}=\frac{-24}{-4} =+6 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*-2}=\frac{-4}{-4} =1 $

See similar equations:

| -4.78=1.08z-4.78 | | 2v-3=11 | | 0.04y=0.02 | | n+8/3=12 | | 0.04x^2+0.01x-5=0 | | Y=(3x+)(2x+5) | | x^2-8x=-91 | | 10s+250=90+12s | | 7/5+5x/3=56/15 | | x-0.75x=12 | | 10x(x+1)-6x=9(x^2+5) | | 46-10×=18+4x | | 20+6p=65-9p | | -13/20x=7 | | -7x+4-3(x-1)=-3x-(6x-3)+3 | | b^2-4b=96 | | 6x+2=3×-1 | | -11+4r,r=5 | | 21(6t+1.2)^2=0 | | 290=65+(25+8)w | | 65+(25+8)w=290 | | -8(x+1)-x-12=-9(x+4)+16 | | 0=19+5.7t+4.9t^2 | | 2.3t+1.19=-18.82 | | 8/3x+1/3x=4x+55/3+8/3x | | (20+x)/3=(33+x)/4 | | 21(6t+1.2)^2-153(6t+1.2)+82=18914 | | 1/5(x-4)=3x-2(x-1)+58/5 | | (20+x)/3=(33+x)/3 | | 1÷9(3t-6=t+6÷18 | | 2/7+7x/5=66/35 | | X-1x-132=0 |

Equations solver categories